The drinking water providers in the Uncompahgre Valley in compliance with the Safe Drinking Water Act are pleased to present this annual water quality report. It summarizes information that your water system already routinely collects concerning your domestic water. This report was prepared in cooperation with the Project 7 Water Authority who is responsible for treating our domestic water.

This report includes where your water comes from, what it contains, and how it compares to standards set by regulatory agencies.

Project 7 and all the water providers in our valley are committed to providing you and your family with safe drinking water that meets or exceeds the highest of standards.

If you wish to attend the next Board or Council meeting of your water provider, please contact your respective entity at the telephone number provided on this page.

The sources of drinking water, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Although all drinking water may reasonably be expected to contain at least small amounts of some substances, it is important to remember that the presence of these substances does not necessarily pose a health risk. More information on this subject can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Contaminants that may be present in source water include:

1. Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
2. Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
3. Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.
4. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems.
5. Radioactive contaminants, that can be naturally occurring or be the result of oil, gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

TEST RESULTS

The state requires Project 7 to monitor for certain substances less than once per year because the concentrations of these substances are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Some of Project 7’s data (lead/copper), though representative, is more than one year old.

The sources of drinking water, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Although all drinking water may reasonably be expected to contain at least small amounts of some substances, it is important to remember that the presence of these substances does not necessarily pose a health risk. More information on this subject can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Contaminants that may be present in source water include:

1. Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
2. Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
3. Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.
4. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems.
5. Radioactive contaminants, that can be naturally occurring or be the result of oil gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Safe Digging is No Accident...Always call 811 Before You Dig!
Each system has a six digit PWSID# assigned to it by the state for regulatory purposes.

The majority of the water treated by Project 7 originates in the Gunnison River and the Blue Mesa system. The remainder of our water comes from the Silver Jack Reservoir system.

The treated water is disbursed to the six distribution entities through connections along Project 7's mainline.

Project 7 uses chloramines to keep the water safe in the distribution system. Although chloramines are SAFE for people, they create special challenges for fish and dialysis patients. Please visit our website for more information: www.project7water.org

The Colorado Department of Health and Environment (CDPHE) completed a Source Water Assessment Program (SWAP) for the Project 7 watershed in 2004. This report cited potential sources of contamination, which mostly consisted of existing/abandoned mines and storage tanks. The full report is available online at: www.cdphe.state.co.us/wq/sw/swaphom.html
Lead/Copper

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>90th Percentile</th>
<th>MCLG</th>
<th>Range (High/Low)</th>
<th>Sample Size</th>
<th>Violation?</th>
<th>Likely Source of Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead+</td>
<td>6/21/17-7/24/17</td>
<td>0.002 ppb</td>
<td>50</td>
<td>0</td>
<td>15 ppb/1.5 ppb</td>
<td>50</td>
<td>NO</td>
<td>Corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Copper+</td>
<td>6/21/17-7/24/17</td>
<td>0.56 ppm</td>
<td>15</td>
<td>0</td>
<td>0.63 ppm/0.05 ppm</td>
<td>30</td>
<td>NO</td>
<td>Corrosion of household plumbing systems.</td>
</tr>
</tbody>
</table>

Turbidity

- **Turbidity**: Highest single measurement 0.12 NTU
- **TT Violation?**: NO

Synthetic Organic Contaminants

Fluoride
- **Sample Date**: 7/31/2017
- **Level Detected**: 0.065 ppb
- **AL/TT/MCL**: 50 ppb / 50 ppb
- **Range**: 1
- **Violation?**: NO

Nitrates
- **Sample Date**: 2/1/2017
- **Levels Detected**: 0.02 ppm
- **AL/TT/MCL**: 10 ppm / 10 ppm
- **Range**: 1
- **Violation?**: NO

Hexachlorocyclopentadiene
- **Sample Date**: 7/31/2017
- **Level Detected**: 0.065 ppb
- **AL/TT/MCL**: 50 ppb / 50 ppb
- **Range**: 1
- **Violation?**: NO

Fluoride

- **Sample Date**: 2/1/2017
- **Level Detected**: > 0.2 ppm
- **Range**: 4 ppm / 4 ppm
- **Sample Size**: 1
- **Violation?**: NO

Nitrates

- **Sample Date**: 2/1/2017
- **Level Detected**: 0.02 ppm
- **Range**: 10 ppm / 10 ppm
- **Sample Size**: 1
- **Violation?**: NO

Hexachlorocyclopentadiene

- **Sample Date**: 7/31/2017
- **Level Detected**: 0.065 ppb
- **Range**: 50 ppb / 50 ppb
- **Sample Size**: 1
- **Violation?**: NO

Inorganics

Gross Alpha*
- **Sample Date**: 7/31/2017
- **Level Detected**: 0.8 pCi/L
- **Range**: 15 pCi/L / 0 pCi/L
- **Sample Size**: 1
- **Violation?**: NO

Radium-Combined*
- **Sample Date**: 7/31/2017
- **Level Detected**: 0.5 pCi/L
- **Range**: 5.0 pCi/L / 0 pCi/L
- **Sample Size**: 1
- **Violation?**: NO

Uranium
- **Sample Date**: 7/31/2017
- **Level Detected**: 0.92 ppb
- **Range**: 30 ppb / 0 ppb
- **Sample Size**: 1
- **Violation?**: NO

* The levels detected are below what the lab can measure with a reasonable degree of accuracy.

Total Organic Carbon (ratio)

- **Sample Date**: 1x/ Month
- **Level Detected**: 1.1 (avg.)
- **Range**: removal ratio 1.00 / N/A
- **Sample Size**: 12
- **Violation?**: NO

* System achieved compliance using alternative criteria

Secondary / Unregulated Contaminates

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Secondary Standard</th>
<th>Range (High/Low)</th>
<th>Sample Size</th>
<th>Violation?</th>
<th>Likely Source of Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>1x/ Month</td>
<td>52 ppm (avg)</td>
<td>250 ppm / 65 ppm</td>
<td>30 ppm / 65 ppm</td>
<td>12</td>
<td>NO</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2013 (8 samples)</td>
<td>1.1ppb(avg)</td>
<td>N/A</td>
<td>0.2 ppb / 1.46 ppb</td>
<td>8</td>
<td>NO</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Strontium</td>
<td>2013 (8 samples)</td>
<td>252 ppb (avg)</td>
<td>N/A</td>
<td>152 ppb / 440 ppb</td>
<td>8</td>
<td>NO</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Vanadium</td>
<td>2013 (8 samples)</td>
<td>0.60 ppb (avg)</td>
<td>N/A</td>
<td>0.37 ppb / 0.82 ppb</td>
<td>8</td>
<td>NO</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>AL/TT/MCL</th>
<th>MCLG</th>
<th>Range (High/Low)</th>
<th>Sample Size</th>
<th>Violation?</th>
<th>Likely Source of Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Haloacetic Acids (HAAs)+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (THMs)+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>AL/TT/MCL</th>
<th>MCLG</th>
<th>Range (High/Low)</th>
<th>Sample Size</th>
<th>Violation?</th>
<th>Likely Source of Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead+</td>
<td>6/21/17-7/24/17</td>
<td>0.002 ppb</td>
<td>15</td>
<td>0</td>
<td>15 ppb/1.5 ppb</td>
<td>50</td>
<td>NO</td>
<td>Corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Copper+</td>
<td>6/21/17-7/24/17</td>
<td>0.56 ppm</td>
<td>15</td>
<td>0</td>
<td>0.63 ppm/0.05 ppm</td>
<td>30</td>
<td>NO</td>
<td>Corrosion of household plumbing systems.</td>
</tr>
</tbody>
</table>

Note: Of the 30 sites tested no sites exceeded the action level for Lead or Copper. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or @http://www.epa.gov/safewater/lead

By-product of drinking water chlorination

Corrosion of household plumbing systems.
Listed on the prior page are substances detected in our drinking water from Jan. 1 to Dec. 31, 2017. Not listed are many other substances for which Project 7 tested but were not detected. A complete list of substances tested for is available from Project 7 Water Authority. Our systems have waivers for dioxin, glyphosate, cyanide, and Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects such as skin or tooth discoloration or aesthetic effects (such as taste, odor or color) in drinking water. EPA recommends these standards but does not require water systems to comply.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

Definitions:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL - (Action Level)</td>
<td>The concentration of a substance which, if exceeded, triggers treatment or other requirements which a water system must follow.</td>
</tr>
<tr>
<td>MCL - (Maximum Contaminant Level)</td>
<td>The “Maximum Allowed” is the highest level of a substance that is allowed in drinking water. MCLs are set as close as feasible using the best available treatment technology.</td>
</tr>
<tr>
<td>MCLG - (Maximum Contaminant Level Goal)</td>
<td>The “Goal” is the level of a substance in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.</td>
</tr>
<tr>
<td>ppm or mg/l</td>
<td>One part per million corresponds to one minute in two years or a single penny in $10,000.</td>
</tr>
<tr>
<td>ppb - (parts per billion or micrograms per liter)</td>
<td>One part per billion corresponds to one minute in 2,000 years or a single penny in $10,000,000.</td>
</tr>
<tr>
<td>NTU - (Nephelometric Turbidity Unit)</td>
<td>A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.</td>
</tr>
<tr>
<td>TT - (Treatment Technique)</td>
<td>A required process intended to reduce the level of a substance in drinking water.</td>
</tr>
<tr>
<td>CARBON, TOTAL</td>
<td>Total organic carbon (TOC) has no health effects. However, total organic carbon provides a medium for the formation of disinfection byproducts. These byproducts include Trihalomethanes (TTHMs) and Halocetic acid (HAA5s). Drinking water containing these byproducts in excess of the MCL may lead to adverse health effects, liver or kidney problems, or central nervous system effects and may have an increased risk of getting cancer.</td>
</tr>
<tr>
<td>COPPER</td>
<td>Copper is an essential nutrient, but some people who drink water containing Copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson’s Disease should consult their personal doctor.</td>
</tr>
<tr>
<td>FLUORIDE</td>
<td>Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Fluoride in drinking water at half the MCL or more may cause mottling of children’s teeth, usually in children less than nine years old. Mottling, also known as dental fluorosis, may include brown staining and/or pitting of the teeth, and occurs only in developing teeth before they erupt from the gums.</td>
</tr>
<tr>
<td>TOTAL HALOACETIC ACIDS (HAAS)</td>
<td>Some people who drink water containing Haloacetic acids in excess of the MCL over many years experience health problems with their liver, kidneys or centenal nervous system and may have an increased risk of getting cancer.</td>
</tr>
<tr>
<td>TOTAL TRIHALOMETHANES (TTHM)</td>
<td>Some people who drink water containing trihalomethanes in excess of the MCL over many years experience health problems with their liver, kidneys or centenal nervous system and may have an increased risk of getting cancer.</td>
</tr>
<tr>
<td>LEAD</td>
<td>Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.</td>
</tr>
<tr>
<td>Radium (combined)</td>
<td>Some people who drink water containing Radium-226 or 228 in excess of the MCL over many years may have an increased risk of getting cancer.</td>
</tr>
<tr>
<td>Uranium</td>
<td>Some people who drink water containing Uranium in excess of the MCL over many years may have an increased risk of getting cancer and kidney toxicity.</td>
</tr>
</tbody>
</table>